6 Linear Estimation

Chapter 6
inear estimation and tesfi

The previous chapter outlined various estimators thatdcbe extracted from a properly
constituted X'X matrix. These estimators have beg@teimented in a GAUSS program called
XPReg.GP, and this chapter describes briefly thelajmvent and working of the program,

the extension for instrumental variables, and the tingsts tests implemented.

. Eqimation has

6.1.1Development of the software

The regression program was first implemented in Autd®81, and has passed through
various stages reflecting the uses made of it. K designed originally as a simple (and
necessary) tool to obtain statistics and estimat@® tross-products, and although in the
subsequent development of the model the coding, cajesbidind features have changed

enormously, the basic principles have changed relatittée.

The five stages of the model have been, roughly,

Version 1Autumn 1991Simple OLS cross-section

Version 2 Spring 1992Time-specific intercepts; analysi€aMariance; residual variance
analysis

Version 3Autumn 1992Fixed-effects (balanced panels only)

Version 4Spring 1993Instrumental variables

Version 5Spring 1994Proper fixed-effects model; time-difieing; instrumental variable and

joint significance tests; complete internal rewrite
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The original fixed-effects model was a relativelyngle extension to deal with individual
heterogeneity in the manner of section 5.2. Howeadtaw in the mathematics meant that the
program only dealt with heterogeneity properly for be& panels. For unbalanced panels the
"fixed effects” model merely applied a meaningles;df@rmation to the data; this was

corrected in Version 5.

The original extraction software was completed andl usefore the first version of the
regression program (the early X'X matrices being aseckoss-tabulations), and has remained
essentially the same although the speed and efficarthie programs have imprO\}edIn line
with Version 5 of the program the extraction softwass completely rewritten, the intention
being to integrate more fully the complete process ftoleection of data to analysis of results.
Although extraction and analysis are separate tastk& choice of models available is
obviously dependent upon the type of cross-product mateaxted, and the type of matrix

created depends on the model to be estimated.

In early 1994, the University of Stirling agreed wite Department of Employment to provide
extraction software enabling general access to the MEhe form of cross-product matrices.
Requests to the DE would list the data to be colleciaterpreting software would produce
extraction software, and the extraction software dqubduce an X'X matrix to be returned
to the researcher. The researcher could then anddgsiata using some provided software or
his own tools. Under the initial specification theftware was designed to produce input for
the simple instrumental-variables version of XPReg(&étsion 4) and a basic working suite
of programs was developed. However, the opportunis/taken to reconsider completely the
type and nature of potential models, with a viewntplementing those that were both feasible
and desirable in the context of an X'X dataset. rEselt was Version 2 of the extraction

software and Version 5 of the analysis program.

' The original extraction routine was written by Ebeth Roberts at the University of Stirling.
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The extraction software is documented elsewher¢heiMNES user instructions to be issued by
the DE. This software is the intellectual propertyhaf DE. Stirling University retains control
over the regression program code and distributiormeSmore basic analysis programs have
also been developed and, with a restricted versfoXRReg.GP, given to the DE for

distribution to users.

It should be noted that, while the extraction sofenvisrto some extent specific to the NES,
the analytical software is independent of the soofdbe data. A properly constructed cross-

product matrix and some locational information isgble data requirement.

6.1.2Collinearity amongst the time dummies

Estimation proceeds using the arithmetic and notatidghe previous chapter. The models that
can be estimated depend upon the matrices createcrlyClee balanced time differenced
model can only be run on a balanced full-size datasetiined in section 5.3. However, this
same dataset could also be used for the fixed-effeadelr(if Ti=T for all individuals, there is
no need for a separate means matrix) and the crossrsenodels, which treat matrices
separately. The actual combinations of matrices asdkl® are described in a user guide to

the softwaré

When the full fixed effects models are being estimaiede is a problem of multicollinearity
between the time dummies and the individual dummieéferBncing or taking deviations will
remove the individual dummies, but will not restore ¥ matrix to full column rank. This
can easily be seen if we consider the deviatiomstoamation on a group of time dummies for

T=4.

2 Initial draft available from the DE or the author.
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01111

T T T

100 0] | 1 T

0 100 T T T
_ (6.1)

0010 11,1 1

0 0 0 1] T T T

R O

LT T |

The rank of the transformed matrix is T-1 and not dnd so this matrix is not invertible.

However, suppose there are only three observationsnindividual. It may thought that

this leads to
111
3 3 3 3
1 0 0 O] } 1_} } E
0100 3 3 3 3
_ (6.2)
0O 00O E E E E
10 0 0 1] 3 3 3 3
101 1,1
L 3 3 3 3]

which has full rank, but this is not the case. I phevious chapter the first matrix in (6.2)
was depicted with no zero columns or rows to simgifgosition; in other words the data was

packed and so the correct version of (6.2) is

111
3 3 3
1 1
o| | -= 1-= -=
|3 3 3 (6.3)
1
11,1
| 3 3 7 3]
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where the transformed matrix has rank T-1 again. eMarrectly, note that the proper form

of @ in (5.48) is always a TxT matrix, but with zeros ondppropriate rows and columns:
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(6.4)

If these zeros did not appear in these places, keestransformation matrix would netveep
out the heterogeneity: spurious valuesoefwould appear in previously blank lines. This then

leads to the transformation:

0110 1
3 3 3
10 0 0]
0100 AL, r0 1
000 O ° ° (65)
00
10 0 0 1]
1 10,1
. 3 3 3]

which again is of rank 2. Dropping one time dummy (colemn) will leave this particular

matrix still with rank 2. However, this is one midiual's record; when the matrix in (6.5) is
stacked with the records for other individuals (véhpatterns of observations differ) then the
overall matrix will be of rank three. Therefore whtie moment is taken of every individual's

records to produce a 3x3 matrix, it will have full rankl 3o be invertible.

This makes no qualitative difference to the algebead so it was ignored in the previous
chapter. As far as estimations goes, the progrdmuwtomatically drop the first time dummy
in a fixed-effects or balanced full-size differencingdel to make the matrix invertible. In the

case of the pooled models, this amounts to droppengdhstant completély

The value of this missing constant term can be reedvieom the means. In all cases,

®  The use of categorical variables also leads tineakity problems. Selection of these other dumrtdes

be dropped is up to the user.
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A= Y-XB (6.6)

where the means are taken over the whole regressitiis mean will also incorporate any
dummy variables dropped; in other words, it is the egoevalue of the dependent variable

for a "representative individual” - including the medithe fixed-effects.

The standard errors given in section 5.2 and 5.3 lmalke £mended for these adjustments. In
both cases, one is taken from the denominatoreoéstimated standard error, reflecting the

fall in the number of variables used. Corrected staheiaors are given in Appendix A6.

6.1.3Collinearity between time dummies and incremental variables

In a recent paper, Bell and Ritchie (1995a) have shbainailowing coefficients to vary over

time has a hitherto unreported side-effect. Whenmalles which increment or decrement
periodically over time (such as age, tenure, ag®whgest child, et cetera) are included in a
regression which has time-varying coefficientse toefficients on the incrementing variables
are poorly identified because of collinearity with three dummies and any other incrementing

variables.

The reason is that the addition of an incrementangable effectively amounts to the inclusion
of a person-specific numerator variable and eithereadtr(in the case of an incrementing
cardinal variable) or a secondary set of time dumrfireshe case of qualitative variables).
This combines with the time dummies (and any otherementing variables) to make

identification of the particular coefficients difficul

This effect is specific to models where the coeffits are estimated jointtyer time; thus the

cross-section model of section 5.1 and the unbalanfededced model of section 5.4 are
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unaffected because of their block-diagonal nature. Menye the unrestricted models of
section 5.2 and 5.3 potentially have this identificafpoablem, and so the interpretation of
some coefficients requires some care. Chapter rismisbes a specific example of this

identification problem.

6.1.4Single observations

The fixed effects covariance estimator takes denatfrom individual means, and so clearly
individuals with only one observation play no sigmfit part in the estimation of the
coefficients (although they will affect the calcutettiof A1 in (6.6)). The extraction software
creates the main and mean matrices separatelythdareasons of practicality and flexibility

discussed at the end of section 5.2.3, and it caaketaccount of single-observation cases.

The effect of including single-observation cases teth excluding them is relatively minor,
and does not affect the calculation of the coefiisie It does mean that the calculation of the
estimated variance in, for example, (5.91) will haxadues for=T; and N different to those
arising from a model in which the single-observatiame initially excluded. However, the
number of single observations in any year is only ait@+5% of the total observed, so, while
N may have 20% of single observations (and so be rofty "too big") over the full
sixteen years of the survey;T; is only around 4% "too big". AST; is easily the dominant
term in the calculations for all but very short studyiqus, it seems likely that the estimated

variance is slightly underestimated in the fixed-@8emodels.
The other area where having single observations ugsetsesults is in the displayed means,
which include single observations in the calculatiasshey represents the mean values of each

variable for a particular period. However, they playpart in the fixed effect calculations.

The single observation issue does not affect thes<estion studies, as these are only
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concerned with observations within a period and netcbrrelation between observations over
time. The differencing calculations likewise are figzted: for the balanced panel a single
observation period is not feasible, and for the unisethpanel the extraction software rejects

single observations.

hes :

One of the more serious limitations of the regrespimgram is the area of hypothesis testing.
Many of the more informative tests are based on raysis of the residual errors (serial

correlation, heteroscedastic-consistent errotsgetera). The relevant statistics would have
to be calculated by sending a program to the DE officasd so such statistics are not
provided by the program. This is not a very satisfgcsolution, but at present there is no

alternative.

The analytical features generated automatically bytbgram are limited to what is available
under the X'X format: essentially anything involyithe total, estimated and residual sums of
squares and other linear combinations of the variabl¢égse are all available from the cross-
product matrix by some method or other, and so sonfelussts and statistics may be

produced.

Given the TSS, ESS and RSS, thénaRd R adjusted for degrees of freedom may be

calculated. The estimates of the variance lealke®-$tatistics via the variance &f
Var(B)=g*(XX )" 6.7)
and F-tests for the general significance of theasgon are available from

- _ ESS/dof1

" TSYdo2 9

where dofl and dof2 are the appropriate degrees obireeds noted in chapter five, F-tests
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for choosing between the unrestricted, pooled andiates! models can also be calculated.
Because the degrees of freedom are more complex fel paoels (especially unbalanced

ones), these are given in full in Appendix A6.

Equation (6.8) is a restricted form of a more genbyalothesis-testing framework whereby
sets of hypotheses may be tested jointly. The progrmmautomatically calculate one set.
Variables may be defined as parts of "groups”; usuahch of the different dummy variable
groupings is generally treated as a set of relatadblas. The program then tests for the joint
significance of all the groups which have two or morembers; for example, the program
will report an F-ratio for whether the occupation duesnas a whole contribute anything

significant to the model, as well as the usualibsafor each individual occupational dummy.

These F tests are all based on the assumption of litgrmahe error term. There are as yet
no tests in the model for this assumption, as neskstare based on an analysis of the

residuals, and these are unavailable to the regngssigram.

imated var s

The program provides a breakdown of the variance bjabdar grouping, following a
suggestion of Blackburn (1990). First, note that
TSS= ESS+ RSS= XY+ RSS= BXX3+ RSS 6.9)

Assume that the X variables can be organised into &gy of variables. The number of
elements in each group may vary; for example, afsetooipation dummies may count as one

group, whereas a wage variable may be thought of as-alement group. Then

X=[X1 Xz--Xu]  B=E[By By Byl (6.10)

with
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_Xl' X1 Xr Xz

Xz X1 Xz X
XX =|"FNr AEAz _ (6.11)

Xm Xwm

Using these definitions gives

~ ~ M " " M M " "
ESS= BXXB=Y B Xut XmB,* 2D, D B Xt X B, (6.12)
m=1 m=1mr=nm+l
In other words, the explained sum of squares can berdskvn into two components: firstly,

the contribution of each group to the total explainadawae; and secondly, the explained

covariance between groups, which may be positive,, z@roegative.

This information is useful as it gives an indicata@rhow the groups interact with one another;
more importantly, it weights the results by thereated coefficients. Thus it can be shown
not whether two variables interact (which could be tbsimply from the covariance matrix of

X), but whether that interaction is important to téktionship being studied.

This is perhaps most useful when regressions are rbntimie-varying coefficients. If, for
example, the contribution of age to the variance igesadeclines over time, this could be
attributable to a decline in the variance of ages [fthulation is more homogeneous and so
age has less chance of explaining wage differentiaks)decline in the coefficient values
(reflecting a decline in the return to age); ornges in both, not necessarily in the same

direction.

One simple way to test this is by studying how theag&nce changes over time. However,
this does not take account of any scale effects.alfannative suggested by Blackburn (1990)

is to apply the coefficients for one "base" yeathtdovariance matrices for each year in turn.
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The result is effectively an index of the relevaota variable group in the regressﬁon

If a large part of the variance of y is explained b dlwn-variance terms, then this suggests
that the various influences on the dependent variaeldaagely independent of one another.
this can be seen by noting that if the variables adependent then as the number of

observations becomes large

ﬁm,Xm’Xmﬁm_-*_oo ﬁmer’Xnﬁn_ﬁerm'Ynﬁn (613)
where the covariances converge to the separate noéagech group of variables. If the
variables are not independent then

ﬁm,Xm’Xmﬁm_+m ﬁmer’Xnﬁn_ioo (614)

However, in most of the models the analysis isedon deviations from either time or
individual means. Thus the means in (6.13) will be tkeams of the transformed variables.
Clearly the mean value of these transformed variahikéde zero; moreover, the variables
will converge to the sum of their mean values ifribenber of observations becomes large and
the variables are not independent. Thus (6.13) and (6.¢dee

A A A A

ﬁm,Xm’Xmﬁm_-*_oo ﬁmer’Xnﬁn_O (615)

when the variable groups are independent, and

A A A

ﬁm,Xm’Xmﬁm_+m ﬁmer’Xnﬁn_ioo (616)

when they are not. For the balanced time-differ@moedel of section 5.3, the sum of all the
transformed X variables is equal to the sum of ttst bbservations for each individual, and

so (6.13) and (6.14) will reflect the averages of thiesedbservations.

Note that using (6.15) and (6.16) as indicators of indegreredwill depend to some extent on

* The usual index number problem arises. With no prefesefor one particular base over another, the

simplest one to implement was chosen.
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the scaling of the variables, particularly when oariegl and continuous variables are mixed.

6.4.1lnstrumental variableregression

One simple extension to the models outlined in theiguevchapter is to allow for the use of
instrumental variables. The linear generalised unséntal variables estimator (GIVE) can be
derived in a number of ways; the GMM interpretatisngiven below (Hall(1993); see
Bowden and Turkington(1984) for a 'traditional' deriwa}i Let Z be a matrix of instruments

uncorrelated with the error vector u. Then

E(X(XB-y)= EXu)#0

' ' 6.17

E@Z/(XB- y))= EZ)=0 (617
by assumption. Defining a quadratic form for the saroptelition
—_ 1 [AAY) 1 [/ —_ 1 ! ! 1 ]

5=(EZU)W(EZU)—(EZ(Y-Xﬁ))W(EZ(Y-Xﬁ)) (6.18)

where W is a weighting matrix not dependent upowhich converges in probability to a

positive definite matrix. Differentiating to findetvalue of3 which minimises this expression,

95 - 0=-2 xzWzy+ 2 XZWZX3
s n n
(6.19)
B=(XZWZX Y XZ'Wzy
The optimal choice of weighting matrix is W=n(Z“Z)and so the linear GIVE is
B=(XZ2@ZZ)*ZX y*X2ZZ)*ZYy (6.20)
Where Z and X have the same rank (that is, Z%qigre), (6.20) collapses to
B,=ZX)'zZy (6.21)

which is exactly the same form as the OLS estima#dirthe matrix arithmetic of the previous
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chapters therefore still holds, with the obvious wouhat the rows and columns selected

from the=vi'vi matrix will differ if Z#X°. This holds for the means matrix calculations too.

Where Z and X have the same rank, the calculat@rstandard errors are

A2 — (y- Xéiv)’(y- X éiv)_ y’y- Zéi’vxy+ ﬁi’vxx’giv
g = =
dof dof

(6.22)
Var( 3,)= 6*(ZX Y (Z2)(XZ )"

where dof is the appropriate number of degrees of freddo the model (Johnston (1984),
p366). These are the same as for the OLS estima®itheatransformation matrices, the
number of observations and restrictions and the nuniiermds remain the same in the two

models.

The instrumental variables estimator therefore regdive cross-product matrices (X'X, X'y,
Z'Z, Z'X, Z'y) in contrast to the two needed for ®(X'X, X'y). However, these can all be
created from the raw cross-product matrix as longhasiristruments already exist in the
matrix. This is a significant disadvantage in that eagty limits the options for two-stage
solutions. For example, to run a two stage least sguagression would involve creating a
dataset; running the first stage regression; ngi® new extraction program using the
estimated coefficients; creating a new datasat ranning the second stage regression. This
may be tedious and threatens significant time pesdliiea poor choice of regressors for the

first round coefficients

It was noted in section 2.3 that dynamic models cbeld¢onsistently estimated by the use of

® Other minor changes from the programming point of \aesvthat the matrix is not symmetric, and it is
no longer necessarily positive definite.

® This does not weaken the claim that the cross-pradattix is an effective tool for linear regressiom; i

fact, the case is more compelling for IV regressioas the cross-product could contain numerous first-round
estimates for a relatively small increase in magipe.
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lagged dependent variables as instruments. The esirasftware does allow for lagged
variables (including in the differenced format). Tféiere dynamic models are feasible,
although as the software currently stands this wouoisblve the loss of a number of
observations, and the estimator is unlikely to be dficient. In the longer term a more
flexible and efficient approach to dynamic models wobkl desirable and there are no
theoretical difficulties to replicating, for exampldhe simpler Arellano and Bond (1988)

estimators (that is, those with spherical errors).

If the number of instruments exceeds the number of meoies then no new conceptual or
practical difficulties arise. All the data in (6.20)gailable from the cross-product matrix and
the standard errors of the coefficients in (6.22) atsl to be amended:

var( 3.)= 6*[(2@2Z Yz 22z yz2'%)|

1 1 (6.23)
= ?lxz@z y' 2)@2@zZ y*z¥)

It is clear that the non-square z'x matrix does nguire any additional information: all the
data needed is somewhere in the cross-product mafris is a consequence of the linear

nature of the IV estimator used here.

This has not been implemented in the program to dpteely from an operational point of
view as it complicates the selection of variables esghat (and this facility has not been
needed so far). Thus the current version of the progiloes not cater for non-square Z'X
matrices. However, as Bowden and Turkington (1984, pp2%t88y, only the minimum

number of instruments play a significant part in theeggjon; in other words, the effective

Z'X matrix is square

6.4.2T esting the 1V specification

’ This does not mean that choosing minimal instrumefltsnecessarily be an efficient IV solution, but
that choosing more instruments than the minimum éffeset will increase the variance of the estimatese
Bowden and Turkington (1984) pp32-36.
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Two tests on the instruments are easily implemented tise cross-product matrix.

The first test statistic is a Hausman test for regpedisturbance independence. This relies on
the potential inconsistency of the OLS estimator garad to the supposed consistency of the

IV estimator to provide a testable distance measure.

The test is between two hypotheses:
Ho: plimXu=0 plimZu=0

H.: plimXuz0 plimZu=0 (6:24)

Under the null hypothesis, OLS estimates of thefico®its are consistent and efficient,
whereas the IV estimates are consistent but inefficieHowever, under the alternative

hypothesis, OLS is inconsistent. Define

4=, Bys (6.25)

Then the Hausman test is whetherq is significadiffgrent from O; that is, whether

ng'Q4=0 (6.26)

whereQ is a weighting matrix. The obvious choice for thisighting matrix is the inverse
covariance ofq, and it can be shown (Hausman (1978)d&oand Turkington (1984)), that

under a fairly general set of assumptions, an asyiopést statistic for (6.20) is

ng'Var(§)"'§_ x*(K) (6.27)

where K is the number of variables, n the number ofrgasens, and Var(q) is a consistent

estimate of the variance ofq ,

Var(G)=Var(3,)-Var(g,,) (6.29)

Under the null hypothesis, Var(q) should be largelfadV estimate oB is inefficient) andq
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small, and so a large value for (6.23) indicates tiejeof H".

It should be noted that this test is predicated onagumption that the IV estimate is
consistent even if fs rejected. Without this assumption, this meretpants to a test for the
relative independence of Z compared to X. In otherds;, the Hausman test compares the
relative performance of two estimators, bpttentially erroneous. Thus this test does require

a degree of confidence about the consistency oftlestimator.

The second test is a general one for the validithe@instruments used, the Sarganl?es'[he
test statistic is simply

ag

q= _X'(P-K (629
where p and k are the number of columns in Z and X c&sply. The basic idea behind the
test is that, if the instruments are uncorrelatat wie error terms, then e'Z(Z‘Z)‘e should
converge to n independent squared errors, and $wmuddsbe small. The adjustment for
degrees of freedom reflects the fact that, ofptle®lumns in Z, k will be constrained by the

action of settinggS/0B=0 in (6.19).

If p=k, then clearly the Sargan test is not appropridthe weighting matrix is irrelevant, and
g in (6.29) collapses to’/o> = 1. The reason is that the coefficient vector usbshe
information in Z by construction, whereas in theramentified case only the most effective

columns of Z are significant (Bowden and Turkingtd884), p29). This test is not currently

® The "n" in (6.22) and (6.23) relates to the number obmiasions used to calculate the coefficient

estimates, for the Hausman test is based on N repelagervations on a parameter set. For our purposes, n i
N for the cross-section models, and; for the fixed effects models.

® See Bowden and Turkington (1984, pp52-55) for a discussion of thleatiausman test actually
measures.

% The Sargan test as presented here can be seen @ig@graorm of Hansen's test of "overidentifying
restrictions" in the GMM methodology (see Hall (1993)tfoe derivation of the general test statistic).
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implemented as only square Z'X matrices are employed.

10€



6 Linear Estimation

The general solution for degrees of freedom are

dof =n-k-r (A6.1)

where n is the total number of observations, k ismtlmber of variables, and r is the number
of other restrictions: for example, taking deviasidrom time means (as in the cross-section
case) means an additional T restrictions in thestincéed model as the sum of the variables

for each of the T periods must sum to zero. The ap@atepcalculations for these results are

RS, R E
SR

(AB.4)
=_ 1. RSS(n-k-r)
TSS(n-r)
A general test of g linear restrictions of the fdRf#=r has ax” form:
(RB-1Y [o?RxX )'R|*(RB-1) _x*() (A65)
which, combined with (A6.3) to remove the unknowngives the F-test
(RB- 1Y [RoxX )R (RB- 1)/
F(g,n-k-r ]
RSS(n-K-1) _F( ) (A6.6)
For a test of g variables being zero, this tesapsés to
- /
(RSS -RSSu)/q F(qn-k-1) (A6.7)

RSSul(nu'ku'ru)_

where the r subscript refers to the RSS from someatest regression and u the unrestricted
or "base" regression. The value of g is slightly glicated if the number of other restrictions
on the regression changes; for example, in thes@edtional regressions the number of
restrictions "r" may be T or 1, although in the fixeflects regressions the number of
restrictions is always N as deviations are takeud the individual mean. This will change

the calculations for the estimated variance usecktived (A6.7). The correct value for "q" in
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(A6.7) is
q:(nu'ku'ru)'(nr'kr'rr) (A68)

For the joint significance tesp£0), q will clearly be k: all the model results shdeviations
from some mean value, and so the appropriate test(#6ér8) is for all_remainingariables

being zero.

Let T be the number of periods under study, N be the nuofbiedividuals observed (not
observations), iTand N the observations for individual i and per perioddspectively, and K
the number of variables in the X matrix, excluding thastant term. One time dummy is
dropped in the fixed-effects and balanced differencedets. Then the degrees of freedom for

the reported statistics are given in Table A6.1, eeaérl
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Table A6.1Degr ees of freedom
Unrestricted Pooled Restricted
o’ Cross-section SNe-T-TK SNi-1-K SNe-T-K
Fixed-effects 2Ti-N-TK-(T-1) 5Ti-N-K 2Ti-N-K-(T-1)
Balanced differenced 25Ti-2N-TK-(T-1) ZTi-2N-K ZTi-2N-K- (T-1)
Unbalanced differenced 2(zN:- T - TK) 2(ENt-1-K) 2EN:- T - K)
R Cross-section SNe-T-TK SNi-1-K SNe-T-K
INt-T INe-1 INt-T
Fixed-effects 2Ti-N-TK-(T-1) 5Ti-N-K 5Ti-N-K-(T-1)
sTi-N sTi-N sTi-N
Balanced differenced 25Ti-2N-TK-(T-1) 25Ti-2N-K 25Ti-2N-K - (T-1)
25T - 2N 25T - 2N 25Ti- 2N
Unbalanced differenced 2(zN:- T - TK) 2(zNt-1-K) 2(zNt-T -K)
2(EN:-T) 2(EN:-T) 2(EN:-T)
Joint F Cross-section TK K K
INt-T-TK INt-1-K 2Ne-T -K
Fixed-effects TK+T-1 K K+T-1
3Ti-N-TK-(T-1) ITi-N-K 2Ti-N-K-(T-1)
Balanced differenced TK+T-1 K K+T-1
25Ti-2N - TK - (T-1) 25Ti-2N -K 25Ti-2N-K - (T-1)
Unbalanced differenced TK K K
2(EN:-T - TK) 2(ENt-1-K) 2(zNt-T -K)
Specification CS Pooled v (T-1)(K+1)
Tests ENt-T -TK
CS Restricted v K(T-1) T-1
INt-T-TK 2Ne-T -TK
FE Pooled v (T-1)(K+1)
2Ti-N-TK-(T-1)
FE Restricted v K(T-1) T-1

STi-N-TK - (T-1)

2Ti-N-K- (T-1)

BD Pooled v

(T-1)(K+1)
25T - 2N - TK - (T-1)

BD Restricted v

K(T-1)
25T - 2N - TK - (T-1)

T-1
25Ti 2N -K - (T-1)

UD Pooled v (T-1)(K+1)
SNe-T-TK

UD Restricted v K(T-1) T-1
SNe-T-TK SNe-T-TK
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