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Chapter 6 

Linear estimation and testing 

 

The previous chapter outlined various estimators that could be extracted from a properly 

constituted X'X matrix.  These estimators have been implemented in a GAUSS program called 

XPReg.GP,  and this chapter describes briefly the development and working of the program,  

the extension for instrumental variables,  and the hypothesis tests implemented. 

 

6.1XPReg.GP:  Estimation basics 

 

6.1.1Development of the software 

 

The regression program was first implemented in Autumn 1991,  and has passed through 

various stages reflecting the uses made of it.  It was designed originally as a simple (and 

necessary) tool to obtain statistics and estimates from cross-products,  and although in the 

subsequent development of the model the coding,  capabilities and features have changed 

enormously,  the basic principles have changed relatively little. 

 

The five stages of the model have been,  roughly, 

 

Version 1Autumn 1991Simple OLS cross-section 

Version 2 Spring 1992Time-specific intercepts;  analysis of covariance;  residual variance 

analysis 

Version 3Autumn 1992Fixed-effects (balanced panels only) 

Version 4Spring 1993Instrumental variables 

Version 5Spring 1994Proper fixed-effects model;  time-differencing; instrumental variable and 

joint significance tests;  complete internal rewrite 
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The original fixed-effects model was a relatively simple extension to deal with individual 

heterogeneity in the manner of section 5.2.  However,  a flaw in the mathematics meant that the 

program only dealt with heterogeneity properly for balanced panels.  For unbalanced panels the 

"fixed effects" model merely applied a meaningless transformation to the data;  this was 

corrected in Version 5. 

 

The original extraction software was completed and used before the first  version of the 

regression program (the early X'X matrices being used as cross-tabulations),  and has remained 

essentially the same although the speed and efficiency of the programs have improved1.  In line 

with Version 5 of the program the extraction software was completely rewritten,  the intention 

being to integrate more fully the complete process from collection of data to analysis of results. 

 Although extraction and analysis are separate tasks,  the choice of models available is 

obviously dependent upon the type of cross-product matrix created,  and the type of matrix 

created depends on the model to be estimated. 

 

In early 1994,  the University of Stirling agreed with the Department of Employment to provide 

extraction software enabling general access to the NES in the form of cross-product matrices.  

Requests to the DE would list the data to be collected,  interpreting software would produce 

extraction software,  and the extraction software would produce an X'X matrix to be returned 

to the researcher.  The researcher could then analyse the data using some provided software or 

his own tools.  Under the initial specification the software was designed to produce input for 

the simple instrumental-variables version of XPReg.GP (Version 4) and a basic working suite 

of programs was developed.  However,  the opportunity was taken to reconsider completely the 

type and nature of potential models,  with a view to implementing those that were both feasible 

and desirable in the context of an X'X dataset.  The result was Version 2 of the extraction 

software and Version 5 of the analysis program. 

                                                        
    1  The original extraction routine was written by Elizabeth Roberts at the University of Stirling. 
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The extraction software is documented elsewhere,  in the NES user instructions to be issued by 

the DE.  This software is the intellectual property of the DE.  Stirling University retains control 

over the regression program code and distribution.  Some more basic analysis programs have 

also been developed and,  with a restricted version of XPReg.GP,  given to the DE for 

distribution to users. 

 

It should be noted that,  while the extraction software is to some extent specific to the NES,  

the analytical software is independent of the source of the data.  A properly constructed cross-

product matrix and some locational information is the sole data requirement. 

 

6.1.2Collinearity amongst the time dummies 

 

Estimation proceeds using the arithmetic and notation of the previous chapter.  The models that 

can be estimated depend upon the matrices created.  Clearly the balanced time differenced 

model can only be run on a balanced full-size dataset as outlined in section 5.3.  However,  this 

same dataset could also be used for the fixed-effects model (if Ti=T for all individuals,  there is 

no need for a separate means matrix) and the cross-section models,  which treat matrices 

separately.  The actual combinations of matrices and models are described in a user guide to 

the software2. 

 

When the full fixed effects models are being estimated there is a problem of multicollinearity 

between the time dummies and the individual dummies.  Differencing or taking deviations will 

remove the individual dummies,  but will not restore the X matrix to full column rank.  This 

can easily be seen if we consider the deviations transformation on a group of time dummies for 

T=4: 

                                                        
    2  Initial draft available from the DE or the author. 
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The rank of the transformed matrix is T-1 and not T,  and so this matrix is not invertible.  

However,  suppose there are only three observations for one individual.  It may thought that 

this leads to 

which has full rank,  but this is not the case.  In the previous chapter the first matrix in (6.2) 

was depicted with no zero columns or rows to simplify exposition;  in other words the data was 

packed and so the correct version of (6.2) is 
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where the transformed matrix has rank T-1 again.  More correctly,  note that the proper form 

of Qi in (5.48) is always a TxT matrix,  but with zeros on the appropriate rows and columns: 



 6  Linear Estimation 
 

 

 
 
 94 

If these zeros did not appear in these places,  then the transformation matrix would not sweep 

out the heterogeneity:  spurious values of -αi would appear in previously blank lines.  This then 

leads to the transformation: 

which again is of rank 2.  Dropping one time dummy (one column) will leave this particular 

matrix still with rank 2.  However,  this is one individual's record;  when the matrix in (6.5) is 

stacked with the records for other individuals (whose patterns of observations differ) then the 

overall matrix will be of rank three.  Therefore when the moment is taken of every individual's 

records to produce a 3x3 matrix,  it will have full rank and so be invertible. 

 

This makes no qualitative difference to the algebra,  and so it was ignored in the previous 

chapter.  As far as estimations goes,  the program will automatically drop the first time dummy 

in a fixed-effects or balanced full-size differencing model to make the matrix invertible.  In the 

case of the pooled models,  this amounts to dropping the constant completely3. 

 

The value of this missing constant term can be recovered from the means.  In all cases, 

                                                        
    3    The use of categorical variables also leads to collinearity problems.  Selection of these other dummies to 
be dropped is up to the user. 
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where the means are taken over the whole regression.  This mean will also incorporate any 

dummy variables dropped;  in other words,  it is the expected value of the dependent variable 

for a "representative individual" - including the mean of the fixed-effects. 

 

The standard errors given in section 5.2 and 5.3 have to be emended for these adjustments.  In 

both cases,  one is taken from the denominator of the estimated standard error,  reflecting the 

fall in the number of variables used.  Corrected standard errors are given in Appendix A6. 

 

6.1.3Collinearity between time dummies and incremental variables 

 

In a recent paper,  Bell and Ritchie (1995a) have shown that allowing coefficients to vary over 

time has a hitherto unreported side-effect.  When variables which increment or decrement 

periodically over time (such as age,  tenure,  age of youngest child,  et cetera) are included in a 

regression which has time-varying coefficients,  the coefficients on the incrementing variables 

are poorly identified because of collinearity with the time dummies and any other incrementing 

variables. 

 

The reason is that the addition of an incrementing variable effectively amounts to the inclusion 

of a person-specific numerator variable and either a trend (in the case of an incrementing 

cardinal variable) or a secondary set of time dummies (in the case of qualitative variables).  

This combines with the time dummies (and any other incrementing variables) to make 

identification of the particular coefficients difficult. 

 

This effect is specific to models where the coefficients are estimated jointly over time;  thus the 

cross-section model of section 5.1 and the unbalanced differenced model of section 5.4 are 

 βλ ˆx - y = 1  (6.6) 
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unaffected because of their block-diagonal nature.  However,  the unrestricted models of 

section 5.2 and 5.3 potentially have this identification problem,  and so the interpretation of 

some coefficients requires some care.  Chapter nine discusses a specific example of this 

identification problem. 

 

6.1.4Single observations 

 

The fixed effects covariance estimator takes deviations from individual means,  and so clearly 

individuals with only one observation play no significant part in the estimation of the 

coefficients (although they will affect the calculation of λ1 in (6.6)). The extraction software 

creates the main and mean matrices separately,  for the reasons of practicality and flexibility 

discussed at the end of section 5.2.3,  and it cannot take account of single-observation cases. 

 

The effect of including single-observation cases and then excluding them is relatively minor,  

and does not affect the calculation of the coefficients.  It does mean that the calculation of the 

estimated variance in,  for example,  (5.91) will have  values for ΣTi and N different to those 

arising from a model in which the single-observations are initially excluded.  However,  the 

number of single observations in any year is only around 3-5% of the total observed,  so,  while 

N may have 20% of single observations (and so be roughly 20% "too big")  over the full 

sixteen years of the survey,  ΣTi is only around 4% "too big".  As ΣTi is easily the dominant 

term in the calculations for all but very short study periods,  it seems likely that the estimated 

variance is slightly underestimated in the fixed-effects models. 

 

The other area where having single observations upsets the results is in the displayed means,  

which include single observations in the calculations as they represents the mean values of each 

variable for a particular period.  However,  they play no part in the fixed effect calculations. 

 

The single observation issue does not affect the cross-section studies,  as these are only 
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concerned with observations within a period and not the correlation between observations over 

time.  The differencing calculations likewise are unaffected:  for the balanced panel a single 

observation period is not feasible,  and for the unbalanced panel the extraction software rejects 

single observations. 

 

6.2Hypothesis Testing 

 

One of the more serious limitations of the regression program is the area of hypothesis testing.  

Many of the more informative tests are based on an analysis of the residual errors (serial 

correlation,  heteroscedastic-consistent errors,  et cetera).  The  relevant statistics would have 

to be calculated by sending a program to the DE offices,  and so such statistics are not 

provided by the program.  This is not a very satisfactory solution,  but at present there is no 

alternative. 

 

The analytical features generated automatically by the program are limited to what is available 

under the X'X format:  essentially anything involving the total,  estimated and residual sums of 

squares and other linear combinations of the variables.  These are all available from the cross-

product matrix by some method or other,  and so some useful tests and statistics may be 

produced. 

 

Given the TSS,  ESS and RSS,  then R2 and R2 adjusted for degrees of freedom may be 

calculated.  The estimates of the variance lead to the t-statistics via the variance of β: 

and F-tests for the general significance of the regression are available from 

where dof1 and dof2 are the appropriate degrees of freedom.  As noted in chapter five,  F-tests 

 )XX( = )Var( -12 ′σβ ˆˆ  (6.7) 

 
TSS/dof2

ESS/dof1
 = F  (6.8) 
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for choosing between the unrestricted,  pooled and restricted models can also be calculated.  

Because the degrees of freedom are more complex for panel models (especially unbalanced 

ones),  these are given in full in Appendix A6. 

 

Equation (6.8) is a restricted form of a more general hypothesis-testing framework whereby 

sets of hypotheses may be tested jointly.  The program can automatically calculate one set.  

Variables may be defined as parts of "groups";  usually,  each of the different dummy variable 

groupings is generally treated as a set of related variables.  The program then tests for the joint 

significance of all the groups which have two or more members;  for example,  the program 

will report an F-ratio for whether the occupation dummies as a whole contribute anything 

significant to the model,  as well as the usual t-ratios for each individual occupational dummy. 

 

These F tests are all based on the assumption of normality in the error term.  There are as yet 

no tests in the model for this assumption,  as most tests are based on an analysis of the 

residuals,  and these are unavailable to the regression program. 

 

6.3Estimated variance analysis 

 

The program provides a breakdown of the variance by variable grouping,  following a 

suggestion of Blackburn (1990).  First,  note that 

Assume that the X variables can be organised into M groups of variables.  The number of 

elements in each group may vary;  for example,  a set of occupation dummies may count as one 

group,  whereas a wage variable may be thought of as a one-element group.  Then 

with 

 RSS + XX = RSS +y X = RSS + ESS = TSS βββ ˆˆˆ ′′′′  (6.9) 

 ]    [  ]     X  X  X[  X M21M21 ′≡≡ ′′′ ββββ KK  (6.10) 
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Using these definitions gives 

In other words,  the explained sum of squares can be broken down into two components: firstly, 

 the contribution of each group to the total explained variance;  and secondly,  the explained 

covariance between groups,  which may be positive,  zero,  or negative. 

 

This information is useful as it gives an indication of how the groups interact with one another; 

 more importantly,  it weights the results by the estimated coefficients.  Thus it can be shown 

not whether two variables interact (which could be found simply from the covariance matrix of 

 X),  but whether that interaction is important to the relationship being studied. 

 

This is perhaps most useful when regressions are run with time-varying coefficients.  If,  for 

example,  the contribution of age to the variance in wages declines over time,  this could be 

attributable to a decline in the variance of ages (the population is more homogeneous and so 

age has less chance of explaining wage differentials);  a decline in the coefficient values 

(reflecting a decline in the return to age);  or changes in both,  not necessarily in the same 

direction. 

 

One simple way to test this is by studying how the age variance changes over time.  However,  

this does not take account of any scale effects.  An alternative suggested by Blackburn (1990) 

is to apply the coefficients for  one "base" year to the covariance matrices for each year in turn. 
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 The result is effectively an index of the relevance of a variable group in the regression4. 

 

If a large part of the variance of y is explained by the own-variance terms,  then this suggests 

that the various influences on the dependent variable are largely independent of one another.  

this can be seen by noting that if the variables are independent then as the number of 

observations becomes large 

where the covariances converge to the separate means of each group of variables.  If the 

variables are not independent then 

However,  in most of the models the analysis is done on deviations from either time or 

individual means.  Thus the means in (6.13) will be the means of the transformed variables.  

Clearly the mean value of these transformed variables will be zero;  moreover,  the variables 

will converge to the sum of their mean values if the number of observations becomes large and 

the variables are not independent.  Thus (6.13) and (6.14) become 

when the variable groups are independent,  and  

when they are not.  For the balanced time-differenced model of section 5.3,  the sum of all the 

transformed X variables is equal to the sum of the first observations for each individual,  and 

so (6.13) and (6.14) will reflect the averages of these first observations. 

 

Note that using (6.15) and (6.16) as indicators of independence will depend to some extent on 

                                                        
    4  The usual index number problem arises.  With no preferences for one particular base over another,  the 
simplest one to implement was chosen. 

 ββββββ ˆˆ_ˆˆ_ˆˆ
nnmmnnmmmmmm XX  XX     +  XX ′′′′′′ ∞  (6.13) 

 ∞±∞ ′′′′   XX     +  XX nnmmmmmm
_ˆˆ_ˆˆ ββββ  (6.14) 

 0  XX     +  XX nnmmmmmm
_ˆˆ_ˆˆ ββββ ′′′′ ∞  (6.15) 

 ∞±∞ ′′′′   XX     +  XX nnmmmmmm
_ˆˆ_ˆˆ ββββ  (6.16) 
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the scaling of the variables,  particularly when categorical and continuous variables are mixed. 

 

6.4Instrumental Variables 

 

6.4.1Instrumental variable regression 

 

One simple extension to the models outlined in the previous chapter is to allow for the use of 

instrumental variables.  The linear generalised instrumental variables estimator (GIVE) can be 

derived in a number of ways;  the GMM interpretation is given below (Hall(1993);  see 

Bowden and Turkington(1984) for a 'traditional' derivation).  Let Z be a matrix of instruments 

uncorrelated with the error vector u.  Then 

by assumption.  Defining a quadratic form for the sample condition 

where W is a weighting matrix not dependent upon β which converges in probability to a 

positive definite matrix.  Differentiating to find the value of β which minimises this expression, 

The optimal choice of weighting matrix is W=n(Z'Z)-1,  and so the linear GIVE is 

Where Z and X have the same rank (that is,  Z'X is square),  (6.20) collapses to 

which is exactly the same form as the OLS estimator.  All the matrix arithmetic of the previous 
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chapters therefore still holds,  with the obvious proviso that the rows and columns selected 

from the Σvi'vi matrix will differ if Z≠X5.  This holds for the means matrix calculations too. 

 

Where Z and X have the same rank,  the calculations for standard errors are 

where dof is the appropriate number of degrees of freedom for the model (Johnston (1984), 

p366).  These are the same as for the OLS estimator,  as the transformation matrices,  the 

number of observations and restrictions and the number of periods remain the same in the two 

models. 

 

The instrumental variables estimator therefore requires five cross-product matrices (X'X, X'y, 

Z'Z, Z'X, Z'y) in contrast to the two needed for OLS (X'X, X'y).  However,  these can all be 

created from the raw cross-product matrix as long as the instruments already exist in the 

matrix.  This is a significant disadvantage in that it greatly limits the options for two-stage 

solutions.  For example,  to run a two stage least squares regression would involve creating a 

dataset;  running the first stage regression;  writing a new extraction program using the 

estimated coefficients;  creating a new dataset;  and running the second stage regression.  This 

may be tedious and threatens significant time penalties for a poor choice of regressors for the 

first round coefficients6. 

 

It was noted in section 2.3 that dynamic models could be consistently estimated by the use of 

                                                        
    5  Other minor changes from the programming point of view are that the matrix is not symmetric,  and it is 
no longer necessarily positive definite. 

    6  This does not weaken the claim that the cross-product matrix is an effective tool for linear regression;  in 
fact,  the case is more compelling for IV regressions,  as the cross-product could contain numerous first-round 
estimates for a relatively small increase in matrix size. 
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lagged dependent variables as instruments.  The extraction software does allow for lagged 

variables (including in the differenced format).  Therefore dynamic models are feasible,  

although as the software currently stands this would involve the loss of a number of 

observations,  and the estimator is unlikely to be very efficient.  In the longer term a more 

flexible and efficient approach to dynamic models would be desirable and there are no 

theoretical difficulties to replicating,  for example,  the simpler Arellano and Bond (1988) 

estimators (that is,  those with spherical errors). 

 

If the number of instruments exceeds the number of regressors,  then no new conceptual or 

practical difficulties arise.  All the data in (6.20) is available from the cross-product matrix and 

the standard errors of the coefficients in (6.22) also need to be amended: 

It is clear that the non-square z'x matrix does not require any additional information:  all the 

data needed is somewhere in the cross-product matrix.  This is a consequence of the linear 

nature of the IV estimator used here. 

 

This has not been implemented in the program to date,  purely from an operational point of 

view as it complicates the selection of variables somewhat (and this facility has not been 

needed so far).  Thus the current version of the program does not cater for non-square Z'X 

matrices.  However,  as Bowden and Turkington (1984,  pp29-30) show,  only the minimum 

number of instruments play a significant part in the regression;  in other words,  the effective 

Z'X matrix is square7. 

 

6.4.2Testing the IV specification 

                                                        
    7  This does not mean that choosing minimal instruments will necessarily be an efficient IV solution,  but 
that choosing more instruments than the minimum effective set will increase the variance of the estimates.  See 
Bowden and Turkington (1984) pp32-36. 
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Two tests on the instruments are easily implemented using the cross-product matrix. 

 

The first test statistic is a Hausman test for regressor-disturbance independence.  This relies on 

the potential inconsistency of the OLS estimator compared to the supposed consistency of the 

IV estimator to provide a testable distance measure. 

 

The test is between two hypotheses: 

Under the null hypothesis,  OLS estimates of the coefficients are consistent and efficient,  

whereas the IV estimates are consistent but inefficient.  However,  under the alternative 

hypothesis,  OLS is inconsistent.  Define 

Then the Hausman test is whetherq  is significantly different from 0;  that is,  whether 

where Ω is a weighting matrix.  The obvious choice for this weighting matrix is the inverse 

covariance ofq ,  and it can be shown (Hausman (1978); Bowden and Turkington (1984)),  that 

under a fairly general set of assumptions,  an asymptotic test statistic for (6.20) is 

where K is the number of variables,  n the number of observations,  and Var(q) is a consistent 

estimate of the variance ofq , 

Under the null hypothesis,  Var(q) should be large (as the IV estimate of β is inefficient) andq  

 
0 =u Z plim     0 u X plim     :H

0 =u Z plim     0 =u X plim     :H

1

0

′≠′
′′

 (6.24) 

 ββ ˆˆˆ
olsiv

 -   q ≡  (6.25) 

 0 = qqn ˆˆ Ω′  (6.26) 

 (K)  q)qar(Vqn 2-1 χ_ˆˆˆˆ′  (6.27) 

 )Var( - )Var( = )qVar(
olsiv ββ ˆˆˆ  (6.28) 
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small,  and so a large value for (6.23) indicates rejection of H0
8. 

 

It should be noted that this test is predicated on the assumption that the IV estimate is 

consistent even if H0 is rejected.  Without this assumption,  this merely amounts to a test for the 

relative independence of Z compared to X.  In other words,  the Hausman test compares the 

relative performance of two estimators,  both potentially erroneous.  Thus this test does require 

a degree of confidence about the consistency of the IV estimator9. 

 

The second test is a general one for the validity of the instruments used,  the Sargan test10.  The 

test statistic is simply  

where p and k are the number of columns in Z and X respectively.  The basic idea behind the 

test is that,  if the instruments are uncorrelated with the error terms,  then e'Z(Z'Z)-1Z'e should 

converge to n independent squared errors,  and so q should be small.  The adjustment for 

degrees of freedom reflects the fact that,  of the p columns in Z,  k will be constrained by the 

action of setting ∂S/∂β=0 in (6.19). 

 

If p=k,  then clearly the Sargan test is not appropriate.  The weighting matrix is irrelevant,  and 

q in (6.29) collapses to σ2/σ2 = 1.  The reason is that the coefficient vector uses all the 

information in Z by construction,  whereas in the overidentified case only the most effective 

columns of Z are significant (Bowden and Turkington (1984),  p29).  This test is not currently 

                                                        
    8  The "n" in (6.22) and (6.23) relates to the number of observations used to calculate the coefficient 
estimates,  for the Hausman test is based on N repeated observations on a parameter set. For our purposes,  n is 
Nt for the cross-section models,  and ΣiTi for the fixed effects models. 

    9  See Bowden and Turkington (1984, pp52-55) for a discussion of what the Hausman test actually 
measures. 

    10  The Sargan test as presented here can be seen as a particular form of Hansen's test of "overidentifying 
restrictions" in the GMM methodology (see Hall (1993) for the derivation of the general test statistic).  

 k) - (p    
)X -(y Z)ZZZ()X -(y 

 = e)ZW()eZ(
n

1
 = q 2

2

-1

2
χ

σ
ββ

σ
_

ˆ

ˆˆ

ˆ

′′′′′′  (6.29) 
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implemented as only square Z'X matrices are employed. 
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Appendix A6Degrees of Freedom in the Linear Model 

 

The general solution for degrees of freedom are 

where n is the total number of observations,  k is the number of variables,  and r is the number 

of other restrictions:  for example,  taking deviations from time means (as in the cross-section 

case) means an additional T restrictions in the unrestricted model as the sum of the variables 

for each of the T periods must sum to zero.  The appropriate calculations for these results are 

A general test of q linear restrictions of the form Rβ=r has a χ2 form: 

which,  combined with (A6.3) to remove the unknown σ,  gives the F-test 

 For a test of q variables being zero,  this test collapses to 

where the r subscript refers to the RSS from some restricted regression and u the unrestricted 

or "base" regression.  The value of q is slightly complicated if the number of other restrictions 

on the regression changes;  for example,  in the cross-sectional regressions the number of 

restrictions "r" may be T or 1,  although in the fixed effects regressions the number of 

restrictions is always N as deviations are taken around the individual mean.  This will change 

the calculations for the estimated variance used to derive (A6.7).  The correct value for "q" in 

 r-k-n = dof  (A6.1) 

 
r-k-n

RSS
 = 2σ̂  (A6.2)  r)-k-(n  

RSS 2

2
χ

σ
_  (A6.3) 

 

r)-TSS/(n

r)-k-RSS/(n
 - 1 = R

 
TSS

ESS
 = 

TSS/n

RSS/n
 - 1 = R

2

2

 (A6.4) 

 [ ] (q)  r) - (RR)XXR()r - (R 2-12 -1 χβσβ _′′′  (A6.5) 

 
[ ]

r)-k-n (q, F  
r)-k-RSS/(n

r)/q - (RR)XXR()r - (R -1 -1

_
ββ ′′′

 (A6.6) 

 r)-k-n (q, F  
)r-k-n/( RSS

)/qRSS - RSS(

uuuu

ur _  (A6.7) 
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(A6.7) is 

For the joint significance test (β≠0),  q will clearly be k:  all the model results show deviations 

from some mean value,  and so the appropriate test from (A6.6) is for all remaining variables 

being zero. 

 

Let T be the number of periods under study,  N be the number of individuals observed (not 

observations),  Ti and Nt the observations for individual i and per period t,  respectively,  and K 

the number of variables in the X matrix,  excluding the constant term.  One time dummy is 

dropped in the fixed-effects and balanced differenced models.  Then the degrees of freedom for 

the reported statistics are given in Table A6.1,  overleaf. 

 )r-k-n( - )r-k-n(=q rrruuu  (A6.8) 
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Table A6.1Degrees of freedom 
 

  Unrestricted Pooled Restricted 

σ
2 Cross-section ΣNt - T - TK ΣNt - 1 - K ΣNt - T - K 

 Fixed-effects ΣTi - N - TK - (T-1) ΣTi - N - K ΣTi - N - K - (T-1) 

 Balanced differenced 2ΣTi - 2N - TK - (T-1) 2ΣTi - 2N - K 2ΣTi - 2N - K - (T-1) 

 Unbalanced differenced 2(ΣNt - T - TK) 2(ΣNt - 1 - K) 2(ΣNt - T - K) 

R2 Cross-section ΣNt - T - TK 

ΣNt - T 

ΣNt - 1 - K 

ΣNt - 1 

ΣNt - T - K 

ΣNt - T 

 Fixed-effects ΣTi - N - TK - (T-1) 

ΣTi - N 

ΣTi - N - K 

ΣTi - N 

ΣTi - N - K - (T-1) 

ΣTi - N 

 Balanced differenced 2ΣTi - 2N - TK - (T-1) 

2ΣTi - 2N 

2ΣTi - 2N - K 

2ΣTi - 2N 

2ΣTi - 2N - K - (T-1) 

2ΣTi - 2N 

 Unbalanced differenced 2(ΣNt - T - TK) 

2(ΣNt - T) 

2(ΣNt - 1 - K) 

2(ΣNt - T) 

2(ΣNt - T - K) 

2(ΣNt - T) 

Joint F Cross-section TK 

ΣNt - T - TK 

K 

ΣNt - 1 - K 

K 

ΣNt - T - K 

 Fixed-effects TK + T - 1 

ΣTi - N - TK - (T-1) 

K 

ΣTi - N - K 

K + T - 1 

ΣTi - N - K - (T-1) 

 Balanced differenced TK + T - 1 

2ΣTi - 2N - TK - (T-1) 

K 

2ΣTi - 2N - K 

K + T - 1 

2ΣTi - 2N - K - (T-1) 

 Unbalanced differenced TK 

2(ΣNt - T - TK) 

K 

2(ΣNt - 1 - K) 

K 

2(ΣNt - T - K) 

Specification 

Tests 

CS Pooled v  (T-1)(K+1) 

ΣNt - T - TK 

  

 CS Restricted v K(T-1) 

ΣNt - T - TK 

T-1 

ΣNt - T - TK 

 

 FE Pooled v (T-1)(K+1) 

ΣTi - N - TK - (T-1) 

  

 FE Restricted v K(T-1) 

ΣTi - N - TK - (T-1) 

T-1 

ΣTi - N - K - (T-1) 

 

 BD Pooled v (T-1)(K+1) 

2ΣTi - 2N - TK - (T-1) 

  

 BD Restricted v K( T-1) 

2ΣTi - 2N - TK - (T-1) 

T - 1 

2ΣTi -2 N - K - (T-1) 

 

 UD Pooled v (T-1)(K+1) 

ΣNt - T - TK 

  

 UD Restricted v K(T-1) 

ΣNt - T - TK 

T-1 

ΣNt - T - TK 

 

 


